Credit Risk Measurement of Trusted Customers Using Logistic Regression and Neural Networks

نویسندگان

  • Gholamreza Khojasteh Department of Management, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
  • Saeed Daei Karimzadeh Department of Economics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده مقاله:

The issue of credit risk and deferred bank claims is one of the sensitive issues of banking industry, which can be considered as the main cause of bank failures. In recent years, the economic slowdown accompanied by inflation in Iran has led to an increase in deferred bank claims that could put the country's banking system in serious trouble. Accordingly, the current paper presents a prediction model for credit risk of real customers of Qavamin Bank Branch in Shiraz, using a combined approach of logistic regression and neural network. Therefore, the necessary examinations were carried out on a sample of 351 individuals from the real customers of the bank in the period 2011-2012. According to the information available, 17 variables were extracted including financial and non-financial variables for classifying customers into well-balanced s and ill-balanced s. Among the variables, five effective variables on credit risk were selected using the parent forward stepwise selection technique, which was used to train neural networks with three neurons in the hidden layer. the optimum cutting point was selected based on the performance curve of the system and the results of the neural network output on the test data show that the accuracy of the combined model in the classifier of well-balanced customers is .89 and in the category of ill-balanced customers is .83 that is better than the results of logistic regression and in general, it is possible to estimate the accuracy of prediction.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing an Expert System for Credit Rating of Real Customers of Banks Using Fuzzy Neural Networks

Currently, in Iran's banking system, non-repayment of facilities has become one of the biggest issues, and due to the lack of a proper system for proper allocation of facilities, they face a number of problems, including the problem of allocation of loans, the problem of failure to repay loans Of the central bank, or the amount of facilities increased from the amount of reimbursement. The solut...

متن کامل

The Comparison of Credit Risk between Artificial Neural Network and Logistic Regression Models in Tose-Taavon Bank in Guilan

One of the most important issues always facing banks and financial institutes is the issue of credit risk or the possibility of failure in the fulfillment of obligations by applicants who are receiving credit facilities. The considerable number of banks’ delayed loan payments all around the world shows the importance of this issue and the necessary consideration of this topic. Accordingly...

متن کامل

Credit Risk Analysis Applying Logistic Regression , Neural Networks and Genetic Algorithms Models

Credit models are useful to evaluate the risk of consumer loans. The application of the technique with greater precision of a prediction model will provide financial returns to the institution. In this study a sample set of applicants from a large Brazilian financial institution was focused on in order to develop three models each one based on one of the alternative techniques: Logistic Regress...

متن کامل

Modelling small-business credit scoring by using logistic regression, neural networks and decision trees

Previous research on credit scoring that used statistical and intelligent methods was mostly focused on commercial and consumer lending. The main purpose of this paper is to extract important features for credit scoring in small business lending on a dataset with specific transitional economic conditions using a relatively small dataset. To do this, we compare the accuracy of best models extrac...

متن کامل

Modeling customer revolving credit scoring using logistic regression, survival analysis and neural networks

The aim of the paper is to discuss credit scoring modeling of a customer revolving credit depending on customer application data and transaction behavior data. Logistic regression, survival analysis, and neural network credit scoring models were developed in order to assess relative importance of different variables in predicting the default of a customer. Three neural network algorithms were t...

متن کامل

Rating the Actual Customers of Banks based on Credit Risk using Multiple Criteria Decision Making and Artificial Intelligence Hyperbolic Regression

This study wants to investigate the rating of the actual customers of banks based on credit risk using multiple criteria decision making and artificial intelligence hyperbolic regression. This is an applied research. The statistical population of the study includes the credit customers of Agriculture Bank in west branches of Mazandaran province, Iran in 2012-2016. A total of 100 cases have been...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره 3

صفحات  91- 104

تاریخ انتشار 2019-10-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023